Name of Assistant Professor: Mrs.Rita Rani

Name of college: CMG GCW Bhodia khera, Fatehabad

Academic	session.	2018-19
Academic	36331011.	2010-19

Class/Semester:B.Sc. Ist Year (2nd Sem.)

Month: January, Feburary

S. N o.	Subject	Topics/ Chapters to be covered	Academic Activity to be organized	Assignm ent/ Tests to be given to the student s
1	Physics Properties of Matter	Paper 1: Unit 1:Moment of inertia Rotation of rigid body, Moment of inertial, Torque, angular momentum, Kinetic Energy of rotation. Theorem of perpendicular and parallel axes (with proof), Moment of inertia of solid sphere, hollow sphere, spherical shell, solid cylinder, hollow cylinder and solid bar of rectangular cross-section, Fly wheel, Moment of inertia of an irregular body, Acceleration of a body rolling down on an inclined plane. Unit 2: Elasticity Elasticity, Stress and Strain, Hook's law, Elastic constant and their relations, Poisson's ratio, Torsion of cylinder and twisting couple, Determination of coefficient of modulus of rigidity for the material of wire by Maxwell's needle, Bending of beam (Bending moment and its magnitude), Cantilever and Centrally loaded beam, Determination of Young's modulus for the material of the beam and Elastic constants for the material of the wire by Searle's method.	Problems of the chapter were discussed	Test of the chapter s were conduct ed
	Kinetic theory of gases-I Kinetic theory of gases-II	Unit 3: Assumption of Kinetic theory of gases, pressure of an ideal gas (with derivation), Kinetic interpretation of Temperature, Ideal Gas equation, Degree of freedom, Law of equipartition of energy and its application for specific heat of gases, Real gases, Vander wall's equation, Brownian motion(Qualitative) Unit 4: Maxwell's distribution of speed and velocities (derivation required), Experimental verification of Maxwell's law of speed distribution: most probable speed, average and r.m.s. speed, Mean free path, Transport of energy and momentum, Diffusion of gases.		

Month: March , April

Name of Assistant Professor: Mrs.Rita Rani

Sr N o.	Subject	Topics/ Chapters to be covered	Academic Activity to be organized	Topic of Assignment / Tests to be given to the students
1	Physics Semiconductor Devices	 Paper 2 Unit 1: Semiconductors Energy bands in solids, Intrinsic and extrinsic semiconductors, carrier mobility and electrical resistivity of semiconductors, Hall effect, p-n junction diode and their characteristics, Zener and Avalanche breakdown, Zener diode, Zener diode as a voltage regulator. Light emitting diodes (LED), Photoconduction in semiconductors, Photodiode, Solar Cell, p-n junction as a rectifier, half wave and full wave rectifiers (with derivation), filters (series inductor, shunt capacitance, L-section or choke, π and R.C. filter circuits). Unit 2: Transistors Junction transistors, Working of NPN and PNP transistors, Three configurations of transistor (C-B, C-E, C-C modes),Common base, common emitter and common collector characteristics of transistor, Constants of a transistor and their relation, Advantages and disadvantages of C-E configuration D.C. load line .Transistor biasing; various methods of transisto biasing and stabilization. 		Test of the chapters were conducted
		 Unit 3: Transistor Amplifiers Amplifiers, Classification of amplifiers, common base and common emitter amplifiers coupling of amplifiers, various methods of coupling, Resistance (apacitance (RC) coupled amplifier (two stage, concept of ban width, no derivation), Feedback in amplifiers, advantages of negative feedback, emitter follower, distortion in amplifiers. Unit 4: Oscillators Oscillators, Principle of oscillation classification of oscillators, Condition for self sustained oscillation: Barkhausen criterion for oscillator, Tuned collectic common emitter oscillator, Hartley oscillator, C.R.O. (Principland Working) 	, - d f n, ed or	

Name of Assistant Professor: Mrs.Rita Rani Name of college: CMG GCW Bhodia khera, Fatehabad

Academic session: 2018-19

Class/Semester:B.Sc. 2nd Year (4th Sem.) Month: January to April

Subject Physics	Topics/ Chapters to be covered	Academi c Activity	Assign ment/
Statistica I Physics- 1	Unit –I: Microscopic and Macroscopic systems, events-mutually exclusive, dependent and independent. Probability, statistical probability, A- priori Probability and relation between them, probability theorems, some probability considerations, combinations possessing maximum probability, combination possessing minimum probability, Tossing of 2,3 and any number of Coins, Permutations and combinations, distributions of N (for N= 2,3,4) distinguishable and indistinguishable particles in two boxes of equal size, Micro and Macro states, Thermodynamical probability, Constraints and Accessible states, Statistical fluctuations, general distribution of distinguishable particles in compartments of different sizes, Condition of equilibrium between two systems in thermal contact β parameter, Entropy and Probability (Boltzman's relation).	Problems of the chapter were discusse d	Tests Test of the chapter s were conduc ted
Postulate s of statistical physics,	Unit –II: Phase space, Division of Phase space into cells, three kinds of statistics, basic approach in three statistics. M. B. statistics applied to an ideal gas in equilibrium- energy distribution law (including evaluation of σ and β), speed distribution law & velocity distribution law. Expression for average speed, r.m.s. speed, average velocity, r. m. s. velocity, most probable energy & mean energy for Maxwellian distribution.		
Quantum Statistics	Unit-III: Need for Quantum Statistics: Bose-Einstein energy distribution law, Application of B.E. statistics to Planck's radiation law B.E. gas, Degeneracy and B.E. Condensation, FermiDirac energy distribution law, F.D. gas and Degeneracy, Fermi energy and Fermi temperature, Fermi Dirac energy distribution law, Fermi Dirac gas and degeneracy, Fermi energy and Fermi temperature, Fermi Dirac energy distribution law for electron gas in metals, Zero point energy, Zero point pressure and average speed (at 0 K) of electron gas, Specific heat anomaly of metals and its solution. M.B. distribution as a limiting case of B.E. and F.D. distributions, Comparison of three statistics.		
Theory of Specific Heat of Solids	Unit-IV: Dulong and Petit law. Derivation of Dulong and Petit law from classical physics. Specific heat at low temperature, Einstein theory of specific heat, Criticism of Einstein theory, Debye model of specific heat of solids, success and shortcomings of Debye theory, comparison of Einstein and Debye theories.		

Name of Assistant Professor: Mrs.Rita Rani Name of college: CMG GCW Bhodia khera, Fatehabad

Academic session: 2019-20

Class/Semester:B.Sc. 1st Year (1st Sem.) Month: August, sept.Oct.

Subject Physics	Topics/ Chapters to be covered Paper 1: : Classical Mechanics and Theory of Relativity	Academi c Activity	Assign ment/ Tests
Classical Mechani cs	Unit 1: Basic concepts of Classical mechanics Mechanics of single and system of particles, Conversion law of linear momentum, Angular momentum and mechanical energy for a particle and a system of particles, Centre of Mass and equation of motion, Constrained Motion. Unit2: Generalized Notations Degrees of freedom and Generalized coordinates,	Problems of the chapter were discusse d	Test of the chapter s were conduc ted
1	Transformation equations, Generalized Displacement, Velocity, Acceleration, Momentum, Force and Potential, Hamilton's variational principle, Lagrange's	Smulov	enetis
	equation of motion from Hamilton's principle, Linear Harmonic oscillator, Simple pendulum, Atwood's machine.	in a unio iltradoro	
Theory of relativity	Unit 3: Frame of reference, limitation of Newton's law of motion, Inertial frame of reference, Galilean transformation, Frame of reference with linear acceleration,	discipatio	emont
	Classical relativityGalilean invariance, Transformation equation for a frame of reference- inclined to an inertial frame and Rotating frame of reference, Non-	Unit 3: I potentià	tism
	inertial frames-The accelerated frame of reference and rotating frame of reference, Effect of centrifugal and coriolis forces due to Earth's rotation, Fundamental frame of reference, Michelson- Morley's experiment, concept of Einstein's relativity.	electron Unit 4: A	lysis
Applicati ons of theory of	Unit 4: Special theory of relativity, Lorentz co-ordinate and physical significance of Lorentz invariance, Length Contraction, Time Dilation, Twin Paradox, Velocity addition theorem, Variation of mass with velocity, Mass energy equivalence,	(b) Resis nductan (sharpne	
relativity	Transformation of relativistic momentum and energy, relation between relativistic momentum and energy, Mass, velocity, momentum and energy of zero rest mass.		

Month: October, November

Subject Physics	Topics/ Chapters to be covered Paper 2: Electricity, Magnetism and Electromagnetic theory
Vector backgroun d and Electric field	Unit 1: Gradient of a scalar and its physical significance, Line, Surface and Volume integrals of a vector and their physical significance, Flux of a vector field, Divergence and curl of a vector and their physical significance, Gauss's divergence theorem, Stoke's theorem Derivation of electric field E from potential as gradient, Derivation of Laplace and Poisson equations, Electric flux, Gauss's Law, Mechanical force of charged surface, Energy per unit volume.
Magnetis m	Unit 2: Magnetic induction, Magnetic flux, Solenoidal nature of vector field of induction properties of (i), (ii), Electronic theory of dia and paramagnetism, Domain theory of ferromagnetism (Langevin's theory), Cycle of magnetization- hystresis loop (Energy dissipation, Hystresis loss and importance of Hystresis Curve)
Electroma gnetism A. C.	Unit 3: Maxwell equations and their derivations, Displacement current, Vector and Scalar potentials, Boundary conditions at interface between two different media, Propagation of electromagnetic wave (Basic idea, no derivation), Poynting vector and Poynting theorem.
Analysis	Unit 4: A.C. circuit analysis using complex variable with (a) Capacitance and Resistance (CF (b) Resistance and Inductance (LR) (c) Capacitance and Inductance (LC) and (d) Capacitance Inductance and Resistance (LCR), Series and parallel resonance circuit, Quality factor (sharpness of resonance).

Name of Assistant Professor: Mrs.Rita Rani Name of college: CMG GCW Bhodia khera, Fatehabad

Academic session: 2019-20 Class/Semester:B.Sc. 2nd Year (3rd Sem.) Month: August to November

Subject Physics	Topics/ Chapters to be covered Paper 1: Computer Programming and Thermodynamics	Academi c Activity	Assign ment/ Tests
Compute r Program ming	UNIT-1: Computer organization, Binary representation, Algorithm development, Flow charts and their interpretation. FORTRAN Preliminaries: Integer and floating point arithmetic expression, built in functions, executable and non-executable statements, input and output statements, Formats, IF, DO and GO TO statements, Dimension arrays, statement function and function subprogram.	Problems of the chapter were discusse d	Test of the chapter s were conduc ted
Applicati ons of FORTRA	UNIT –2: Algorithm, Flow Chart and Programming for Print out of natural numbers, Range of the set of given numbers, Ascending and descending order, Mean and standard deviation, Least square fitting of curve, Roots of quadratic equation, Product of two matrices, Numerical integration (Trapezoidal rule and Simpson 1/3 rule).	of the childran were distanced	the chape 5 vers control ed
N program ming	UNIT-3: Thermodynamic system and Zeroth law of thermodynamics. First law of thermodynamics and its limitations, reversible and irreversible process. Second law of thermodynamics and its significance, Carnot theorem, Absolute scale of temperature, Absolute Zero and magnitude of each division on work scale and		
Thermod ynamics-I	perfect gas scale, Joule's free expansion, , Joule Thomson effect, Joule-Thomson (Porous plug) experiment, conclusions and explanation, analytical treatment of Joule Thomson effect. Entropy, calculations of entropy of reversible and irreversible process, T-S diagram, entropy of a perfect gas, Nernst heat law(third law of thermodynamics), Liquefaction of gases, (oxygen, air, hydrogen and helium), Solidification of He below 4K, Cooling by adiabatic demagnetization.		
Thermod ynamics- II	UNIT-4: Derivation of Clausius-Clapeyron and Clausius latent heat equation and their significance, specific heat of saturated vapours, phase diagrame and triple point of a substance, development of Maxwell thermodynamical relations. Thermodynamical functions: Internal energy (U), Helmholtz function (F), Enthalpy (H), Gibbs function (G) and the relations between them, derivation of Maxwell thermodynamical		
	relations from thermodynamical functions, Application of Maxwell relations: relations between two specific heats of gas, Derivation of Clausius-Clapeyron and Clausius equation, variation of intrinsic energy with volume for (i) perfect gas (ii) Vanderwall gas (iii) solids and liquids , derivation of Stefans law, adiabatic compression and expension of gas & deduction of theory of Joule Thomson effect.		

Name of Assistant Professor: Mrs.Rita Rani Name of college: CMG GCW Bhodia khera, Fatehabad

S. N o.	Subject	Topics/ Chapters to be covered	Academic Activity to be organized	Assignm ent/ Tests to be given to the student s		
1	Physics	Paper 1:		3		
	Properties of Matter	Unit 1:Moment of inertia Rotation of rigid body, Moment of inertial, Torque, angular momentum, Kinetic Energy of rotation. Theorem of perpendicular and parallel axes (with proof), Moment of inertia of solid sphere, hollow sphere, spherical shell, solid cylinder, hollow cylinder and solid bar of rectangular cross-section, Fly wheel, Moment of inertia of an irregular body, Acceleration of a body rolling down on an inclined plane.	of the chapter were discussed	of the chapter were	of the t chapter d were s discussed d	Test of the chapter s were conduct ed
		Unit 2: Elasticity Elasticity, Stress and Strain, Hook's law, Elastic constant and their relations, Poisson's ratio, Torsion of cylinder and twisting couple, Determination of coefficient of modulus of rigidity for the material of wire by Maxwell's needle, Bending of beam (Bending moment and its magnitude), Cantilever and Centrally loaded beam, Determination of Young's modulus for the material of the beam and Elastic constants for the material of the wire by Searle's method.				
	Kinetic theory of gases-I	Unit 3: Assumption of Kinetic theory of gases, pressure of an ideal gas (with derivation), Kinetic interpretation of Temperature, Ideal Gas equation, Degree of freedom, Law of equipartition of energy and its application for specific heat of gases, Real gases, Vander wall's equation, Brownian motion(Qualitative)				
	Kinetic theory of gases-II	Unit 4: Maxwell's distribution of speed and velocities (derivation required), Experimental verification of Maxwell's law of speed distribution: most probable speed, average and r.m.s. speed, Mean free path, Transport of energy and momentum, Diffusion of gases.				

Month: March , April

Name of Assistant Professor: Mrs.Rita Rani

Sr N o.	Subject	Topics/ Chapters to be covered	Academic Activity to be organized	Topic of Assignment / Tests to be given to the students
1	Physics Semiconductor Devices	Paper 2 Unit I: Semiconductors Energy bands in solids, Intrinsic and extrinsic semiconductors, carrier mobility and electrical resistivity of semiconductors, Hall effect, p-n junction diode and their characteristics, Zener and Avalanche breakdown, Zener diode, Zener diode as a voltage regulator. Light emitting diodes (LED), Photoconduction in semiconductors, Photodiode, Solar Cell, p-n junction as a rectifier, half wave and full wave rectifiers (with derivation), filters (series inductor, shunt capacitance, L-	Problems of the chapter were discussed	Test of the chapters were conducted
		section or choke, π and R.C. filter circuits). Unit 2: Transistors Junction transistors, Working of NPN and PNP transistors, Three configurations of transistor (C-B, C-E, C-C modes),Common base, common emitter and common collector characteristics of transistor, Constants of a transistor and their relation, Advantages and disadvantages of C-E configuration. D.C. load line .Transistor biasing; various methods of transistor biasing and stabilization.		Ninetic Theory of
		Unit 3: Transistor Amplifiers Amplifiers, Classification of amplifiers, common base and common emitter amplifiers, coupling of amplifiers, various methods of coupling, Resistance- Capacitance (RC) coupled amplifier (two stage, concept of band width, no derivation), Feedback in amplifiers, advantages of negative feedback, emitter follower, distortion in amplifiers.	noliom	Kinetic Rates a
		Unit 4: Oscillators Oscillators, Principle of oscillation classification of oscillators, Condition for self sustained oscillation: Barkhausen criterion for oscillation, Tuned collecto common emitter oscillator, Hartley oscillator, C.R.O. (Principle and Working)	r	

Name of Assistant Professor: Mrs.Rita Rani Name of college: CMG GCW Bhodia khera, Fatehabad

Academic session: 2019-20

Class/Semester:B.Sc. 2nd Year (4th Sem.) Month: January to April

Subject Physics	Topics/ Chapters to be covered	Academi c Activity	Assign ment/ Tests
Statistica I Physics- 1	Unit –I: Microscopic and Macroscopic systems, events-mutually exclusive, dependent and independent. Probability, statistical probability, A- priori Probability and relation between them, probability theorems, some probability considerations, combinations possessing maximum probability, combination possessing minimum probability, Tossing of 2,3 and any number of Coins, Permutations and combinations, distributions of N (for N= 2,3,4) distinguishable and indistinguishable particles in two boxes of equal size, Micro and Macro states, Thermodynamical probability, Constraints and Accessible states, Statistical fluctuations, general distribution of distinguishable particles in compartments of different sizes, Condition of equilibrium between two systems in thermal contact β parameter, Entropy and Probability (Boltzman's relation).	Problems of the chapter were discusse d	Test of the chapter s were conduc ted
Postulate s of statistical physics,	Unit –II: Phase space, Division of Phase space into cells, three kinds of statistics, basic approach in three statistics. M. B. statistics applied to an ideal gas in equilibrium- energy distribution law (including evaluation of σ and β), speed distribution law & velocity distribution law. Expression for average speed, r.m.s. speed, average velocity, r.m. s. velocity, most probable energy & mean energy for Maxwellian distribution.		
Quantum Statistics	Unit-III: Need for Quantum Statistics: Bose-Einstein energy distribution law, Application of B.E. statistics to Planck's radiation law B.E. gas, Degeneracy and B.E. Condensation, FermiDirac energy distribution law, F.D. gas and Degeneracy, Fermi energy and Fermi temperature, Fermi Dirac energy distribution law, Fermi Dirac gas and degeneracy, Fermi energy and Fermi temperature, Fermi Dirac energy distribution law for electron gas in metals, Zero point energy, Zero point pressure and average speed (at 0 K) of electron gas, Specific heat anomaly of metals and its solution. M.B. distribution as a limiting case of B.E. and F.D. distributions, Comparison of three statistics.		
Theory of Specific Heat of Solids	Unit-IV: Dulong and Petit law. Derivation of Dulong and Petit law from classical physics. Specific heat at low temperature, Einstein theory of specific heat, Criticism of Einstein theory, Debye model of specific heat of solids, success and shortcomings of Debye theory, comparison of Einstein and Debye theories.		

Name of Assistant Professor: Mrs.Rita Rani Name of college: CMG GCW Bhodia khera, Fatehabad

Academic session: 200-20 Class/Semester:B.Sc. 1st Year (1st Sem)

Month: November to February

Subject Physics	Topics/ Chapters to be covered Paper 2: Electricity, Magnetism and Electromagnetic theory
Vector backgroun d and Electric field Magnetis m	 Unit 1: Gradient of a scalar and its physical significance, Line, Surface and Volume integrals of a vector and their physical significance, Flux of a vector field, Divergence and curl of a vector and their physical significance, Gauss's divergence theorem, Stoke's theorem. Derivation of electric field E from potential as gradient, Derivation of Laplace and Poisson equations, Electric flux, Gauss's Law, Mechanical force of charged surface, Energy per unit volume. Unit 2: Magnetic induction, Magnetic flux, Solenoidal nature of vector field of induction, properties of (i) , (ii) , Electronic theory of dia and paramagnetism, Domain theory of ferromagnetism (Langevin's theory), Cycle of magnetization- hystresis loop (Energy dissipation, Hystresis loss and importance of Hystresis Curve)
gnetism	Unit 3: Maxwell equations and their derivations, Displacement current, Vector and Scalar potentials, Boundary conditions at interface between two different media, Propagation of electromagnetic wave (Basic idea, no derivation), Poynting vector and Poynting theorem.
Analysis	Unit 4: A.C. circuit analysis using complex variable with (a) Capacitance and Resistance (CR) (b) Resistance and Inductance (LR) (c) Capacitance and Inductance (LC) and (d) Capacitance, Inductance and Resistance (LCR), Series and parallel resonance circuit, Quality factor (sharpness of resonance).
	frames and the second

A second second second function (F). Enthalpy (F) is selected at the second sec

Name of Assistant Professor: Mrs.Rita Rani Name of college: CMG GCW Bhodia khera, Fatehabad

Academic session: 2020-21 Class/Semester: B.Sc. 2nd Year (3rd Sem.) Month: August to october

Subject	Topics/ Chapters to be covered	Academi	Assign
Physics	Paper 1: Computer Programming and Thermodynamics	c Activity	ment/
Compute	UNIT-1: Computer organization, Binary representation, Algorithm development,	Problems	Tests
r Program ming	Flow charts and their interpretation. FORTRAN Preliminaries: Integer and floating point arithmetic expression, built in functions, executable and non-executable statements, input and output statements, Formats, IF, DO and GO TO statements, Dimension arrays, statement function and function subprogram.	of the chapter were discusse d	Test of the chapter s were conduc ted
	UNIT -2: Algorithm, Flow Chart and Programming for Print out of natural numbers,	elAni&-reUMA	
1	Range of the set of given numbers, Ascending and descending order, Mean and	lange of the	
and the second	standard deviation, Least square fitting of curve, Roots of quadratic equation,	tandard de	
Applicati ons of	Product of two matrices, Numerical integration (Trapezoidal rule and Simpson 1/3 rule).	ie <mark>lio stubeli</mark> Iomain (elii	
FORTRA	The second s	i to on i	
V	UNIT-3: Thermodynamic system and Zeroth law of thermodynamics. First law of	NIT-3" The	
program ning	thermodynamics and its limitations, reversible and irreversible process. Second law	hermo <mark>dyna</mark> i	
iiiig	of thermodynamics and its significance, Carnot theorem, Absolute scale of	of thermody	
	temperature, Absolute Zero and magnitude of each division on work scale and	emperature	
hermod	perfect gas scale, Joule's free expansion, , Joule Thomson effect, Joule-Thomson	sel Bana	
namics-l	(Porous plug) experiment, conclusions and explanation, analytical treatment of	BIOR ADAGA	
Redards	Joule Thomson effect. Entropy, calculations of entropy of reversible and irreversible	oule Thoms	
	process, T-S diagram, entropy of a perfect gas, Nernst heat law(third law of		
	thermodynamics), Liquefaction of gases, (oxygen, air, hydrogen and helium), Solidification of He below 4K, Cooling by adiabatic demagnetization.	lanvoorman Louguntoiro	
bornsed	UNIT-4: Derivation of Clausius-Clapeyron and Clausius latent heat equation and their	nhā k Tim	
hermod namics-	significance, specific heat of saturated vapours, phase diagrame and triple point of a	e en a mar a finnea	
nannes	substance, development of Maxwell thermodynamical relations. Thermodynamical	be service in	
	functions: Internal energy (U), Helmholtz function (F), Enthalpy (H), Gibbs function		
	(G) and the relations between them, derivation of Maxwell thermodynamical		
	relations from thermodynamical functions, Application of Maxwell relations:		
	relations between two specific heats of gas, Derivation of Clausius-Clapeyron and		
	Clausius equation, variation of intrinsic energy with volume for (i) perfect gas		
	(ii)Vanderwall gas (iii)solids and liquids , derivation of Stefans law, adiabatic		
	compression and expention of gas & deduction of theory of Joule Thomson effect.		
	terrester and experition of gas & deduction of theory of Joule Thomson effect.		

Name of Assistant Professor: Mrs.Rita Rani Name of college: CMG GCW Bhodia khera, Fatehabad

Academic session: 2020-21 Class/Semester:B.Sc. 2nd Year (3rd Sem.) Month: August to october

Subject Physics	Topics/ Chapters to be covered Paper 1: Computer Programming and Thermodynamics and best and the second design of	Academi c Activity	Assign ment/ Tests
Compute r Program ming	UNIT-1: Computer organization, Binary representation, Algorithm development, Flow charts and their interpretation. FORTRAN Preliminaries: Integer and floating point arithmetic expression, built in functions, executable and non-executable statements, input and output statements, Formats, IF, DO and GO TO statements, Dimension arrays, statement function and function subprogram.	Problems of the chapter were discusse d	Test of the chapter s were conduc ted
Applicati ons of	UNIT –2: Algorithm, Flow Chart and Programming for Print out of natural numbers, Range of the set of given numbers, Ascending and descending order, Mean and standard deviation, Least square fitting of curve, Roots of quadratic equation, Product of two matrices, Numerical integration (Trapezoidal rule and Simpson 1/3 rule).	JNIT –2: Alg Range of th Standard de Product of t Tule).	
FORTRA N program ming	UNIT-3: Thermodynamic system and Zeroth law of thermodynamics. First law of thermodynamics and its limitations, reversible and irreversible process. Second law of thermodynamics and its significance, Carnot theorem, Absolute scale of temperature, Absolute Zero and magnitude of each division on work scale and perfect gas scale, Joule's free expansion, , Joule Thomson effect, Joule-Thomson	JNIT-3: The hermodyna of thermod emperature herfect gas	igram ig
Thermod ynamics-I	perfect gas scale, Joule's free expansion, , Joule Monson effect, Joule Monson (Porous plug) experiment, conclusions and explanation, analytical treatment of Joule Thomson effect. Entropy, calculations of entropy of reversible and irreversible process, T-S diagram, entropy of a perfect gas, Nernst heat law(third law of thermodynamics), Liquefaction of gases, (oxygen, air, hydrogen and helium), Solidification of He below 4K, Cooling by adiabatic demagnetization.	Porous plug oule Thomso rocess', T-S nermodynar	imics-1
Thermod ynamics- II	UNIT-4: Derivation of Clausius-Clapeyron and Clausius latent heat equation and their significance, specific heat of saturated vapours, phase diagrame and triple point of a substance, development of Maxwell thermodynamical relations. Thermodynamical functions: Internal energy (U), Helmholtz function (F), Enthalpy (H), Gibbs function (G) and the relations between them, derivation of Maxwell thermodynamical relations from thermodynamical functions, Application of Maxwell relations: relations between two specific heats of gas, Derivation of Clausius-Clapeyron and Clausius equation, variation of intrinsic energy with volume for (i) perfect gas (ii) Vanderwall gas (iii) solids and liquids , derivation of Stefans law, adiabatic compression and expention of gas & deduction of theory of Joule Thomson effect.		